Air Toxics Monitoring Pilot Project

Barbara Morin
Rhode Island Department of
Environmental Management
Office of Air Resources

National Project

- * EPA funded \$3 million Initial Year
 - † \$2.5 for monitoring
 - \$0.5 for data analysis
- Purpose
 - Help design national network
 - Location of sites
 - Frequency of sampling
 - Spatial variability
 - Verify modeling (e.g. CEP, NATA)

Project Locations

- 1 pilot in each EPA region
- 4 urban areas
 - † Providence, RI (5 sites)
 - Tampa Bay, FL (6 sites)
 - Detroit, MI (8 sites)
 - Seattle, WA (6 sites)
- 6 smaller city/rural areas
 - * San Juan, PR; Charleston, WV; Rio Rancho, NM; Cedar Rapids, IA; Grand Junction, CO; and San Jacinto, CA

Logistics- National Program

- Initial project one- year duration
- Roughly calendar year 2001
- Sampling frequency ≥ 1 in 12 days
- At least the 17 core pollutants
 - † 9 VOCs
 - 2 carbonyls
 - ₱ 6 metals
- Standardized methods

Spatial Scales

- Microscale Represents localized areas (several to 100 meters)
- Middle Scale Areas up to several blocks (100 to 500 meters)
- Neighborhood Scale Extended area with uniform land use (0.5 - 4 km)
- Urban Scale Overall citywide conditions (4 to 50 km)

Providence Sites

- 5 sites- neighborhood scale
 - ₱ E. Providence PAMS/PM2.5 site
 - Urban LeaguePM2.5 site urban residential
 - Pawtucket PM2.5/PM10 site adjacent to I-95
 - Johnson & Wales Univ. combination residential/industrial
 - West End urban school/ residential/industrial area

Providence Pollutants - 9 Core VOCs

Benzene

Dichloromethane

1,3-Butadiene

Chloroform

Trichloroethylene

Carbon tetrachloride

1,2-Dichloropropane

Tetrachloroethylene

Vinyl chloride

7 "Max" VOCs

- Acrylonitrile data quality?
- 1,2-Dibromoethane
- † cis-1,3-Dichloropropene
- trans-1,3-Dichloropropene
- 1,2-Dichloroethane
- Ethylene oxide data quality?
- 1,1,2,2-Tetrachloroethane

16 Other VOC HAPs

Chloromethane MEK

Carbon disulfide 1,1,1-Trichloroethane

Chlorobenzene MTBE

p-Dichlorobenzene Styrene

Ethylbenzene Toluene

1,1-Dichloroethane Xylenes (o, m & p)

1,1-Dichloroethene n-Hexane

2,2,4 Trimethylpentane

Core Metals and Carbonyls

Metals (total)

Beryllium

Cadmium

Chromium

Lead

Manganese

Nickel

Carbonyls

Formaldehyde

Acetaldehyde

(Acetone)

Network Operation

- * All sites May 19, 2001 May 26, 2002
- Two sites in 2nd year
- One site in 3rd year
- Start-up issues electricity, training
- 24-hour samples every 6th day
 - † All pollutants, all sites

Diurnal Variation

- **E. Providence PAMS/Toxics site**
- No continuous VOC monitors
- June, July and August 8 3-hour
 VOC samples collected per day
- October, January and May 2 12hour VOC samples per day
- 6:00 AM 6:00 PM, 6:00 PM 6:00 AM

Method - VOCs

- * EPA Method TO-14a/15
- Summa Canisters
- * Xontec canister samplers
- Temperature controlled enclosures
- Analysis on GC/MS

Method - Carbonyls

- ₱ EPA Method TO-11a
- Collection on DNPH traps
- Atec 100 sampling unit
- Temperature controlled shelter
- + HPLC analysis

Methods - Metals

- Collection with PM10 sampler and TSP Hi-Vol sampler
- * EPA Method IO-3 with ICAP/MS or ICAP analysis
- RI analysis done by RTI

Methods - Semivolatiles

- Semivolatile (e.g. PAH) sampling not performed in Rhode Island
- In other states, use EPA method TO-13A
- * Filters and sorbent (e.g. PUF)
- Solvent extraction
- GC/MS analysis

Preliminary Data Availability

- † VOCs
 - † 49 sampling days 5/19/01-3/3/02
- Carbonyls
- Metals
 - † 47 sampling days 5/19/01-2/25/02

Metals - ICP vs ICP/MS

- Tradeoff
 - **† ICP lower cost**
 - **† ICP/MS lower detection limit**
- Initial analyses used ICP/MS
- All metals except Be present in levels above ICP MDL

ICP vs ICP/MS (cont)

- Be concentrations often below ICP MDL
- Mean Be concentrations:
 - † 0.004 0.006 ng/m³ (PM-10)
 - * 0.007 0.009 ng/m³ (TSP)
- Be 10⁻⁶ cancer level 0.4 ng/m³
- Be not health-significant, others >
 ICP MDL, so switched to ICP

Metals Background Issues

- Quartz filters contain background concentrations of metals
- Mean metals in blanks as percentage of mean in samples:

```
₱ Pb
₱ Mn
3 - 4 %
₱ Cd
₱ 16 %
₱ Ni
₱ 14 - 21 %
₱ Cr
55 - 71%
```

Comparison of Metals to Health Benchmarks (ng/m³)

	Mean Conc.	Cancer BM	Non-cancer BM
Cr	0.5 - 1.1	0.08 (VI)	8
Mn	4.0 - 6.0		50
Ni	4.2 - 6.8	4	6000
Cd	0.2 - 0.4	0.6	
Pb	9.6 -12.1	80	1500

Chromium Issues

- Highest background levels on percentage basis (55-71%)
- Highest risk, assuming all is hexavalent (6 -14 X 10⁻⁶)
- California and Michigan have found low (3% and 1%) ratios of hexavalent to total chromium
- Highest levels of Cr (and Ni) at mobile source site

PM10 vs TSP

Carbonyls at RI Sites

	(ppb)	(ppb)	
	Formaldehyde	Acetaldehyde	
Cancer BM	0.07	0.3	
NonCancer BM	30	5	
<u>Average</u>			
E Prov	3.3	1.1	
W End	3.1	1.0	
Pawtucket	2.9	0.9	
Urban Lg	2.9	0.9	
J & W	2.2	0.9	
<u>Maximum</u>			
E Prov	8.0	2.4	
W End	7.2	2.2	
Pawtucket	6.1	1.9	
Urban Lg	6.2	2.1	

Formaldehyde at Mobile Source and Downwind Sites

Carbonyl Issues

- Little spatial variability
- Downwind PAMs site levels ≥ levels at mobile source site
- Formaldehyde cancer risk at all sites 3 -5 X 10⁻⁵
- Acetaldehyde cancer risk at all sites 3 X 10⁻⁶
- Seasonality important

Highest Risk VOCs

1,3 butadiene 1 - 4 X 10⁻⁵

benzene 8 - 15 X 10⁻⁶

† chloroform 3 X 10⁻⁶

tetrachloroethylene 1 - 6 X 10⁻⁶

trichloroethylene 0.2 - 2 X 10⁻⁶

Risk from VOCs at RI Sites

Risk Associated with VOCs at RI Sites

Benzene Results (ppb)

Tetrachloroethylene Mystery

Tetrachloroethylene

VOC Issues

- 6 VOCs exceed cancer benchmark
- 2 are from mobile sources, 2
 background, and 2 from stationary
- acrylonitrile and ethylene oxide measurements not reliable
- benzene and 1,3-butadiene
 highest near highway, lowest in rural area

VOC Issues (cont)

- Very high levels of tetrachloroethylene seen at Pawtucket (mobile source) site for 6 weeks at end of 2001
- Difficult to pinpoint source, because of varying wind direction over 24-hour sampling period, lag time in sample processing
- May use sector sampling

Other Issues

- Need methods for measuring:
 - † acrolien
 - * acrylonitrile
 - + ethylene oxide
 - + diesel
 - † arsenic

Other issues (cont)

- 24-hour formaldehyde (and acetaldehyde) peaks came close to short-term benchmarks.
- Continuous formaldehyde analysis would give more information.